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Classical Euclidean Wormhole Solution and Wave
Function for a Nonlinear Scalar Field
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In this paper we consider the classical Euclidean wormhole solution of the Born—Infeld
scalar field. The corresponding classical Euclidean wormhole solution can be obtained
analytically for both very small and large At the extreme limit of smalp the wormhole
solution has the same format as one obtained by Giddings and Stromhhgeedr
Physics B306, 890, 1988). At the extreme limit of large the wormhole solution is

a new one. The wormhole wave functions can also be obtained for both very small
and largep. These wormhole wave functions are regarded as solutions of quantum-
mechanical Wheeler—Dewitt equation with certain boundary conditions.

KEY WORDS: Euclidean wormhole; Born—Infeld field; wormhole wave function;
Wheeler-Dewitt equation.

1. INTRODUCTION

Euclidean wormholes in quantum gravity are possibly useful in understanding
black hole evaporation; in allowing nonlocal connections that could determine
fundamental constants, e.g.,(Coleman, 1988), and even as an alternative to the
Higgs mechanism (Mignemi and Moss, 1993).

In Einstein theory, the complex scalar field and conformal scalar field have
classical Euclidean wormhole solutions. These scalar fields are constrained to be a
linear field and the wormholes as solution of quantum-mechanical Wheeler—Dewitt
equation has been obtained (Howking and Pape, 1990).

In this paper we consider the classical Euclidean wormhole solution and
wormhole wave function with a nonlinear Born—Infeld field.

The corresponding Lagrangian of Born—Infeld field has been first proposed
by Heisenberg (1952) to describe the process of meson multiple production con
nected with strong field regime, as a generalization of the Born—Infeld one,
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LB =b%|/1— (1/202)FFk — 1] (Born and Infeld. 1934), that removes the
point-charge singularity that mars classical electrodynamics. When the param-
eter of the field approaches to zero, the corresponding Lagrangian will reduce
to linear case. Static and spherically symmetric solutions of Born—Infeld scalar
field and corresponding black hole have been recently investigated qualitatively
by de Oliveiry (1995). Born—Infeld-type Lagrangians have also been considered
in the theory of strings and branes (Boillat and Strumia, 1998; Deser and Gibbons,
1998; de Oliveira, 1995; Feigenbaum, 1998; Palatnik, 1999; Tseytlin, 1986). It
was shown that the low energy effective field theory on D-branes is of Born—Infeld
type (Tseytlin, 1986). The consistency of thenodel for the world sheet of string

is shown to require that the brane be described by Born—Infeld action, just like in
the general curved background requiring consistency of string theory leads to the
Einstein—Hilbert action.

The present paperis organized as follows. In Section 2 we obtain the Euclidean
wormhole solution of Born—Infeld scalar field. According to the Euler—Lagrangian
equation of motion of Born—Infeld scalar field, we can obtaat the limit of large
and small cosmological scalar factdRgespectively. At such limit condition, we
found Euclidean wormholes. In Section 3 we found wormhole wave function of
our nonlinear scalar field model. In last section we discuss our results.

2. CLASSICAL WORMHOLE SOLUTION

The Euclidean action of gravitational field interacting with a Born—Infeld-
type scalar field is given by

S = /167TGfd4x+/Ls/§d4x (1)

where we have chosen unit so tleat 1, R; is the Ricci scalar curvature and the
LagrangiarL s of the nonlinear Born—Infeld scalar field is (Born and Infeld, 1934;
Heisenberg, 1952)

1

Ls= X [1 — 1- )»(,O,M(p,ug“”jl (2)

Wheni — 0, based on Taylor expansion (2) approximates to

1
. _ =+ w
)|LI£>nO LS - 2(‘0:!‘-(10,1}9 (3)

We choose the standard Euclidean and closed R-W metric

ds’ = d® + R¥(r) { 1d_r2 5 +r7[(d6?) + sir? O(d(pz)]} (4)

Wherer is the Euclidean radial coordinate aRgr) is the radius of curvature of
a 3D sphere. According to the “cosmological principlR'must only depend on
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7. We write Einstein equations as

3R2 3

TR TRT 81GTy ©
2R R 1

et 87GT! =87rGT? = 87GT] (6)

where the upper index* denotes the derivative with respecttoWe substitute
the Lagrangian (2) into Eule—Lagrange equation

d /L oL
()%=
dr \ 9¢ g
Then we obtain
R6¢2
— =W 8
1+ 1g? 0 ®)
and consequently
. Wo
= [——— 9
¢ RE — Won 9)

WhereW, is a constant of integration. We write components of energy—momentum
tensor of Born—Infeld scalar field as

1p
THy = __ 9Ty SHLg (10)

V31— 1 ,0,0% v

Substituting Egs. (9) and (2) into (10), we obtain
9= % [\/Rﬁ — AWp/R3 — 1] (11)
Tll = T22 = T33 = —% [l - Rg/\/ R6 — }\WO] (12)

Substituting (11) into Einstein equation (5), we can obtain

3R2 3 &G [JRG—)\WO _1}

" TR- R3 (13)

R—1_ %6 [RZ\/l — AWoR-6 — R2] (14)

3\
From Eq. (9), we find thaR is very small or very large whenis very large or very
small respectively. Assuming thatis very small (i.e.,R is very large), Eq. (14)
becomes
47 GWh

RE=1
* 3R

(15)
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WhenW, < 0, the wormhole solution of Eq. (15) is

o o (). 2] e s (). 2]+ Vo

R R 2 RoR
(16)

WhereRy =/ =% We note that this wormhole solution has the same format

as one obtained by Giddings and Strominger (1988; Palatnik, 1998). Wien °
very large (i.e.R s very small), we can obtain from Eq. (14)

81 G,/ oo

RR=1-— Y > 17
R (17)

We restricth > 0, integrating (17) we can obtain wormhole solution of Eq. (17),

that is
N JE-1+ /R -1
JE-1-/B+1

WhereN = 87G,/ =% > 0. From Eg. (18) we can find that™ R(r) =

Using R(O) 0fromEq. (17) we can obtain the size of wormhole thr&4@) =
andR(0) = AN > 0. Thus we obtain a new wormhole solution (18).

3. WORMHOLE WAVE FUNCTION

It is possible that the wormholes are regarded as solutions of quantum-
mechanical Wheeler-Dewitt (WD) equation (Coule, 1992; Gonzalez, 1990;
Hawking and Pape, 1990). These wave functions have to obey certain bound-
ary conditions in order that they represent wormholes. The wave function will be
damped at large radiug, i.e., such a wave function tends to zerdRs> oo, and
when R nears 0, it should be oscillatory (Palatnik, 2001). Wave function should
tend to a constant & — 0 (Coule, 1997). The Lorentz action of the gravitational
field interacting with a Born—Infeld-type scalar field is given by

/1%Gd_ﬂ&+/LwC§$x (19)

whereR; is the Ricci scalar curvature and is Eq. (2). However, in Eq. (19),.,
is decided by Eq. (20). The closed R-W space-time metric is

d§__—m2+R%0{ dr? 2w9?+a¥ew¢m} (20)
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Using Eqg. (20) and integrating space components, the action (19) becomes (The
upper dot means the derivative with respect to the time

. 3 2 2p3 1 \/—U

E/ Lgdt+/Lsdt (21)

To quantize the model, we first find the canonical moment

Pr = (%) <3’T> RR, P, = (aL ) (Zn ng/\/W)

2G
and the Hamiltoniatd = PrRR+ P, — Ly — Ls,

G 3 272R3 AP2

H = —— P2 —_ R 1 - 1 - ¢ 22

3mR R 4G A ( A7 4R® (22)
For smallp, the Hamiltonian (22) can be simplified by using the Taylor expansion

G 3 P2 AP,
H=——"P2_""R L 23
TR R 4G | 4?Re 4nRO 23)
If ¢ is large, then Eq. (22) becomes
G 3r 21°R®
H=-——P2- "R 24
3R R 4G % 24)

The WD equation is obtained frotdy = 0 and Egs. (23) and (24) by replacing
Pr > —i(%) andP, — —i (%). Then we obtain

2 Pa 1 d Y
=t 5m  maias  Teamsaaa YR =0 25
|:3R2+R8R R23d2 167%R8 54 ()}w (25)
and
2 P
T RR IRV =0 26
[8R2+R8R u( )}‘” (26)

where ®? = 47 Gyp?/3 and the parametd? represents the ambiguity in the or-
dering of factorsR and = in the first term of Egs. (23) and (24). We have also

denoted
37\ 2
UR =(—) R?
R (26)

u(R) = @—g) R? [1— &Q—AGRZ]
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Equations (25) and (26) are the WD equations corresponding to action (19) in the
cases of small and large respectively. Together we can obtain the equation of
motion of Born—Infeld scalar field when we substitute the Lagrangiginto the

Eule-Lagrangian equation
d /oLs dlg
—(==)-_=_0 27

dt <8§0> dg (7)

c
= | —— 28
Y=VRtcCa (28)

The upper dot means the derivative with respect totttwhereC is a constant

of integration. From Eq. (28) we find th& is very small or very large when

¢ is very large or very small respectively. In other word, Egs. (25) and (26) are
the WD equations corresponding to action (19) in the cases of large andRmall
respectively. WhermR is very large, we take the ambiguity of ordering facke

—1 and set transformatiorR( Ry)?> = &, with Ry the Planck’s length. Choosing
appropriate units makes the Planck constiant 1, speed of lightt = 1, and

Ro\/ 32 ~ 10733 cm. Then Eq. (25) becomes

Then we obtain

2 2 4
M_ia_w_;a_w_ngo (29)

whereU = (37/4G)?R4. Assumingy/ (o, ®) = Q(o)e*®, with K an arbitrary
constant, Eq. (29) takes the form:

d?Q K2 uK* .
W—(ﬁ“l‘F-I-U)Q:O (30)

Where 1 = 1/167*RS. When R (and consequently) is very large, Eq. (30)
approximates to

2Q .,

a0z P Q=0 (31)
Wherep = (3%)R2. The solution of Eq. (31) is

Q = exp(-po) (32)

From (32) we can find that wave functigh— 0whenR — oo (and consequently
o — 00).

If Ris very small, we take the ambiguity of ordering fact®r= —1 and
set the transformationR/Ry)? = o, with Ry the Planck length. Choosing ap-
propriate units makes the Planck constant 1, the speed of light =1 and
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= /% ~ 10-*cm. Then Eq. (26) becomes

d2 2
d%_(i_g) %(1_$a%)w=o (33)

WhenR > 87rG (and consequently > o GF%) Eg. (33) can be approximated
as
d2
Y ey =0 (34)
do?

Wherey = (261)1/2 R3. Equation (34) has the solution

Y=o zl( 4 3/2) (35)

The solution (35) shows that the wave function oscillates wRagars zero radius.
WhenR « ,/ Eq (33) can be approximated as

d?y 3r
G0z ( ) Roy =0 (36)
Equation (36) has the solution
¥ = Nexe B (37)

This wave function tends to a constant Rsends to a zero. In the geometry
described by the R—W metric, the probability of wormhole situated betWReen
R+ dRis

o(R) o ¥2R?dR (38)

The probability density igr?R?. The position of the maximum probability can be
determined by

d
RWR)=0 (39)
From (39) we can obtain
R= 46 (40)
6

Equation (40) implies that most probable radius of wormhole is of the Planck scale,
namely the quantum effect can make a wormhole survive gravitational collapse.
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4. CONCLUSION

At the extreme limits of small, the classical wormhole solution of the
Born—Infeld scalar field has the same format as one obtained by Giddings and
Strominger. lfy is very large, a new wormhole solution can be obtained. From the
Eule—Lagrange equation of the Born—Infeld scalar field, we find that cosmological
scale factors are very large or very small whens ‘very small or very large
respectively. We obtain the wormhole wave function. It is the solution of quantum-
mechanical Wheeler—Dewitt equation with certain boundary conditions. The wave
function is exponentially damped for large three geometries and the wave function
tends to a zero as cosmological scale factors tend to an infinity. They oscillate near
zero radius; it tends to a constant as cosmological radius tends to a zero.

In guantum cosmology with a Born—Infeld-type scalar field, the wave function
of Universe is obtained. An inflationary Universe is predicted with the largest
possible vacuum energy (let al., 1999).
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